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Abstract—There exist complex interactions among a large number of latent factors behind the decision making processes of different

individuals, which drive the various user behavior patterns in recommender systems. These factors hidden in those diverse behaviors

demonstrate highly entangled patterns, covering from high-level user intentions to low-level individual preferences. Uncovering the

disentanglement of these latent factors can benefit in enhanced robustness, interpretability, and controllability during representation

learning for recommendation. However, the large degree of entanglement within latent factors poses great challenges for learning

representations that disentangle them, and remains largely unexplored in literature. In this paper, we present the SEMantic MACRo-

mIcro Disentangled Variational Auto-Encoder (SEM-MacridVAE) model for learning disentangled representations from user behaviors,

taking item semantic information into account. Our SEM-MacridVAE model achieves macro disentanglement by inferring the high-level

concepts associated with user intentions (e.g., to buy a pair of shoes or a laptop) through a prototype routing mechanism, as well as

capturing the individual preferences with respect to different concepts separately. The micro disentanglement is guaranteed through a

micro-disentanglement regularizer stemming from an information-theoretic interpretation of VAEs, which forces each dimension of the

representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). The semantic information

including visual and categorical signals extracted from candidate items is utilized to further boost the recommendation performance of

the proposed SEM-MacridVAE model. Empirical experiments demonstrate that our proposed approach is able to achieve significant

improvement over the state-of-the-art baselines. We also show that the learned representations are interpretable and controllable,

capable of potentially leading to a new paradigm for recommendation where users have fine-grained control over some target aspects

of the recommendation candidates.

Index Terms—Disentangled representation, recommendation

Ç

1 INTRODUCTION

LEARNING representations that can accurately reflect users’
preference, based chiefly on user behavior, has been an

important research focus for recommender systems since
the advent of collaborative filtering [57]. Despite the huge
success in the past decade, existing user behavior-based
representation learning methods, including the deep struc-
ture approaches [10], [20], [38], [40], [65], [79], generally
ignore the complex interactions among the latent factors
behind the users’ decision-making processes. These latent
factors can be highly entangled, ranging from macro con-
cepts that govern the intention of a user in a particular
behavior, to micro individual preferences at a granular level
when implementing a specific intention. Existing methods
fail to disentangle these latent factors, resulting in the fact

that those learned representations may mistakenly preserve
the confounding of the highly entangled factors, which
leads to non-robustness and low interpretability.

Disentangled representation learning, which targets at
learning factorized representations capable of uncovering
and disentangling the latent explanatory factors hidden in
the observed data [3], has recently attracted lots of attentions
in the research community. Disentangled representations
benefits in more robustness, i.e., less sensitive to the mislead-
ing correlations discovered in the limited observed training
data. Besides, the enhanced interpretability brought by disen-
tangled representation also finds direct application in recom-
mendation-related tasks, such as transparent advertising
[41], customer-relationship management, and explainable
recommendation [19], [78] etc. Moreover, the controllability
exhibited by many disentangled representations [7], [8], [9],
[13], [21], [31] can provide users with explicit controls over
their desired recommendation results and offer them more
interactive experience, which has great potential in driving a
new paradigm for recommendation. However, the existing
literature on disentangled representation learning mainly
focuses on computer vision [9], [13], [14], [21], [22], [34], [37],
[52], [80] rather than recommender systems.

User behaviors in recommender systems can be driven
by both macro intentions and micro preferences, where
macro intentions may involve high-level user intentions
such as purchasing a pair of shoes or a laptop and micro
preferences may refer to low-level user preferences such as
the size or color of the shoes. Therefore, given that the above
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discrete relational user behavior data is essentially different
from continuous image data, learning disentangled repre-
sentations based on user behavior data for recommendation
becomes largely unexplored and poses two challenges.

� Themacro intentions andmicro preferences co-exist in
user behaviors, requiring the disentangled representa-
tion learning to separate these two levels of factors in a
way that can preserve the hierarchical relations
between high-level user intentions and low-level indi-
vidual preferences under the intentions.

� The observed user behavior data, such as user-item rat-
ings and user-item consumptions, are discrete and
sparse in essence, differing themselves from continu-
ous image data, which implies that the observed user
behavior data is only associatedwith a very small num-
ber of entries in the high-dimensional representation
space. This will be especially problematic when explor-
ing the interpretability of a particular isolated dimen-
sion through varying the value of that dimension with
other dimensions fixed.

To solve the challenges, we propose the SEManticMACRo-
mIcro Disentangled Variational Auto-Encoder (SEM-Macrid-
VAE) model for learning disentangled representations based
on user behavior with item semantic information being taken
into consideration in this paper. Our proposedmethod explic-
itly models the separation of macro and micro factors when
performingdisentanglement at each level. In particular,macro
disentanglement is achieved by discovering the high-level
concepts associated with user intentions through a prototype
routing mechanism, and separately capturing the individual
preferences of a user with respect to different concepts. Micro
disentanglement is strengthened through a micro-disentan-
glement regularizer derived from interpreting VAEs [33], [58]
in terms of an information-theoretic perspective, which aims
at forcing each individual dimension to indicate an indepen-
dent micro factor. The semantic information including visual
and categorical signals from items is employed to further
boost the model performances of the proposed SEM-Macrid-
VAE model. To handle the conflict between sparse discrete
user behavior observations anddense continuous latent repre-
sentations, we propose a beam-search strategy for investigat-
ing the interpretability of each isolated dimension through
finding a smooth trajectorywithin different representations.

We conduct extensive empirical experiments to show
that our SEM-MacridVAE model can achieve significant
improvement over several state-of-the-art baselines. Experi-
mental results also demonstrate that the learned disen-
tangled representations from SEM-MacridVAE can be
interpretable and controllable, which may potentially bring
a promising new paradigm for recommendation where
users are given fine-grained controls over target aspects of
the recommendation candidates.

To summarize, this paper makes the following
contributions.

� We study the problem of disentangled representa-
tion learning for discrete and sparse relational user
behavior data in recommendation.

� We propose SEMantic MACRo-mIcro Disentangled
Variational Auto-Encoder (SEM-MacridVAE) model,

which is able to conduct both macro and micro
disentanglement simultaneously in representation
learning for user behavior.

� We utilize two types of semantic information, i.e.,
visual and categorical signals extracted from candi-
date items, to further boost the recommendation
performance.

� We conduct extensive experiments on several real-
world datasets to verify the advantages of our SEM-
MacridVAE model in terms of recommendation accu-
racy, interpretability and controllability.

In particular, we would like to point out that compared
to the MacridVAE model [51], our proposed SEM-Macrid
model has the following expansions:

1) We propose a new SEM-MacridVAE which incorpo-
rates the visual semantic and categorical semantic
signals extracted from items to boost the model
performance.

2) Besides the public Movielens datasets adopted by
MacridVAE, we additionally include four public avail-
able Amazon datasets to enrich our experiments.

3) We conduct more extensive experiments, including
more recent comparative baselines, comprehensive
ablation studies as well as visualizations.

The remainder of this paper is organized as follows. We
review related works in Section 2 and present our proposed
SEM-MacridVAE model in Section 3. Section 4 describes
details about empirical evaluations over several real-world
datasets in terms of various metrics. Last but not least, we
conclude the whole paper and point out research directions
deserving further investigations in Section 5.

2 RELATED WORK

In this section, we review existing works on user behavior
representation learning and disentangled representation
learning.

2.1 Learning Representations From User Behavior

Learning from user behavior has been a central task of rec-
ommender systems since the advent of collaborative filter-
ing [11], [23], [56], [57], [60]. Being able to predict user
preferences through uncovering complex and unexpected
patterns hidden in users’ past behaviors without any
domain knowledge, factorization based recommenda-
tion [36] has become one of the most popular methods in
recommender systems. These factorization based collabora-
tive filtering models factorize user and item information
into latent representations to approximate user preferences
and item attributes, either in a deterministic way [26], [35],
[42], [46], [48], [56], [69], [70], [72] or a probabilistic man-
ner [15], [27], [47], [55], [59], [68], [74]. In addition to early
factorization based attempts, the more recent deep learning
methods [10], [20], [38], [40], [65], [79] achieve massive
improvement by learning highly informative representa-
tions. The entanglement of the latent factors behind user
behavior, however, is mostly neglected by the black-box
representation learning process adopted by the majority of
the existing methods. To the extent of our knowledge, we
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are the first to study disentangled representation learning
on user behavior data.

2.2 Disentangled Representation Learning

Disentangled representation learning aims to identify and dis-
entangle the underlying explanatory factors [3]. Being capable
of producing robust, controllable, and explainable representa-
tions, disentangled representation learning has become one of
the core problems in machine learning. In general, variational
methods are widely applied for disentangled representation
over images. b-VAE [21] demonstrates that disentanglement
can emerge once the KL divergence term in the VAE [33]
objective is aggressively penalized. In particular, Kingma and
Welling [33] propose to utilize Bayesian posterior inference
and variational estimation to learn the controllable factors hid-
den in the observed data. Higgins et al. [21] propose b� VAE
by setting a weight b for the KL divergence to improve repre-
sentation disentanglement learned in the observed data while
sacrificing mutual information between input data and latent
representations. Later approaches separate the information
bottleneck term [63], [64] and the total correlation term, and
achieve a greater level of disentanglement [7], [8], [31]. Other
works either design an attentive architecture to learn aspect
matrix for word embeddings [17] or utilize methods based on
triplets to learn aspect representations from sentences where
each aspect has a separate encoder [25]. Though a few existing
approaches [6], [9], [12], [13], [30] do notice that a dataset can
contain samples from different concepts, i.e., follow a mixture
distribution, their settings are fundamentally different from
ours. To be specific, these existing approaches assume that
each instance is from a concept, while we assume that each

instance interacts with objects from different concepts. The
majority of the existing efforts are from the field of computer
vision [9], [13], [14], [21], [22], [34], [37], [52], [80]. Disentangled
representation learning on relational data, such as graph-
structured data, was not explored until recently [49], [66], [76].
This work focuses on disentangling user behavior from both
the macro intention and micro preference in recommender
systems.

3 METHOD

In this section, we describe our SEM-MacridVAE model for
learning disentangled representations from user behaviors
in detail, whose whole framework is demonstrated in Fig. 1.

3.1 Notations and Problem Formulation

A user behavior dataset D consists of the interactions
between N users and M items. The interaction between the
uth user and the ith item is denoted by xu;i 2 f0; 1g, where
xu;i ¼ 1 indicates that user u explicitly adopts item i,
whereas xu;i ¼ 0 means there is no recorded interaction
between the two. For convenience, we use xu ¼ fxu;i : xu;i ¼
1g to represent the items adopted by user u. The goal is to
learn user representations fzugNu¼1 that achieves both macro
and micro disentanglement. We use uu to denote the set that
contains all the trainable parameters of our model.

3.1.1 Macro Disentanglement

Users may have very diverse interests, and interact with
items that belong to many high-level concepts, e.g., product
categories. We aim to achieve macro disentanglement, by

Fig. 1. The whole framework of our proposed SEM-MacridVAE model. The macro disentanglement is accomplished through learning a set of proto-
types (macro concepts) based on which the user intention related with each item is inferred. Different colors (blue, yellow and green) in the figure indi-
cate different macro concepts where each macro concept (one color) has one single independent prototype, encoder and decoder (with the same
color). The micro disentanglement is achieved by capturing the preferences of the target user over different intentions separately, guaranteed by
magnifying the KL divergence where a term penalizing the total correlation can be separated with a factor of b. Semantic information included cate-
gorical and visual signals extracted from candidate items is utilized to further improve model performance. In particular, visual signals are used to ini-
tialize the item factors and prototype representations, and categorical signals serve as the supervisions for learning macro concept C.

410 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023



learning a factorized representation of user u, namely zu ¼
½zð1Þu ; zð2Þu ; . . . ; zðKÞu � 2 Rd0 , where d0 ¼ Kd, assuming that there
are K high-level concepts. The kth component zðkÞu 2 Rd is
for capturing the user’s preference regarding the kth con-
cept. Additionally, we infer a set of one-hot vectors C ¼
fcigMi¼1 for the items, where ci ¼ ½ci;1; ci;2; . . . ; ci;K �. If item i
belongs to concept k, then ci;k ¼ 1 and ci;k0 ¼ 0 for any k0 6¼
k. We infer fzugNu¼1 in an unsupervised way, and learn C in
a supervised manner through the categorical signals of the
semantic information.

3.1.2 Micro Disentanglement

High-level concepts correspond to the intentions of a user,
e.g., to buy clothes or a cellphone. We are also interested in
disentangling a user’s preference at a more granular level
regarding the various aspects of an item. For example, we
would like the different dimensions of zðkÞu to individually
capture the user’s preferred sizes, colors, etc., if concept k is
clothing.

3.2 Model

We start by proposing a generative model that encourages
macro disentanglement. For a user u, our generative model
assumes that the observed data are generated from the fol-
lowing distribution:

puuðxuÞ ¼ EpuuðCÞ

Z
puu xu j zu;Cð ÞpuuðzuÞ dzu

� �
; (1)

and

puu xu j zu;Cð Þ ¼
Y

xu;i2xu
puuðxu;i j zu;CÞ; (2)

where the meanings of xu; zu;C are described in the previ-
ous subsection. We also assume that

puuðzuÞ ¼ puuðzu jCÞ

in Equation (1), i.e., zu and C are generated by two inde-
pendent sources. Note that ci ¼ ½ci;1; ci;2; . . . ; ci;K � is one-hot,
since we assume that item i belongs to exactly one concept.
We also remark that

puuðxu;i j zu;CÞ ¼ Z�1u �
XK
k¼1

ci;k � gðiÞuu ðzðkÞu Þ

is a categorical distribution over theM items, where

Zu ¼
XM
i¼1

XK
k¼1

ci;k � gðiÞuu ðzðkÞu Þ;

and g
ðiÞ
uu : Rd ! Rþ is a shallow neural network that esti-

mates how much a user with a given preference is inter-
ested in item i. We use sampled softmax [29] to estimate Zu

based on a few sampled items whenM is very large.

3.2.1 Macro Disentanglement

We assume above that the user representation zu is suffi-
cient for predicting how the user will interact with the
items. And we further assume that using the kth component

zðkÞu alone is already sufficient if the prediction is about an
item from concept k. This design explicitly encourages zðkÞu

to capture preference regarding only the kth concept, as
long as the inferred concept assignment matrix C is
meaningful.

We will describe later the implementation details of
puuðCÞ, puuðzuÞ and g

ðiÞ
uu ðzðkÞu Þ. Nevertheless, we note that puuðCÞ

requires careful design to prevent mode collapse, i.e., the
degenerate case where almost all items are assigned to a sin-
gle concept.

3.2.2 Variational Inference

We follow the variational auto-encoder (VAE) paradigm [33],
[58], and optimize uu by maximizing a lower bound ofP

u ln puuðxuÞ, where ln puuðxuÞ is bounded as follows:

ln puuðxuÞ
�EpuuðCÞ

�
Equuðzu j xu;CÞ

�
ln puuðxu j zu;CÞ

�
�DKL quuðzu j xu;CÞkpuuðzuÞð Þ�: (3)

The proof is as follows.

Proof. Given the following equation,

quuðzu;C j xuÞ ¼ quuðzu j xu;CÞpuuðCÞ;

then we have the following inequality,

ln puuðxuÞ
¼ Equuðzu;C j xuÞ ln puuðxuÞ½ �

¼ Equuðzu;C j xuÞ ln
puuðxu; zu;CÞ
puuðzu;C j xuÞ

� �

¼ Equuðzu;C j xuÞ ln
quuðzu;C j xuÞ
puuðzu;C j xuÞ

� �

þ Equuðzu;C j xuÞ ln
puuðxu; zu;CÞ
quuðzu;C j xuÞ

� �

¼ Equuðzu;C j xuÞ ln
quuðzu;C j xuÞ
puuðzu;C j xuÞ

� �

þ Equuðzu;C j xuÞ ln puuðxu j zu;CÞ½ �

þ Equuðzu;C j xuÞ ln
puuðzu;CÞ

quuðzu;C j xuÞ
� �

¼ DKL quuðzu;C j xuÞkpuuðzu;C j xuÞð Þ
þ Equuðzu;C j xuÞ ln puuðxu j zu;CÞ½ �
�DKL quuðzu;C j xuÞkpuuðzu;CÞð Þ
� Equuðzu;C j xuÞ ln puuðxu j zu;CÞ½ �
�DKL quuðzu;C j xuÞkpuuðzu;CÞð Þ
¼ EpuuðCÞ

�
Equuðzu j xu;CÞ

�
ln puuðxu j zu;CÞ

�
�DKL quuðzu j xu;CÞkpuuðzuÞð Þ�:

Note that in the last line above, we have used

DKL quuðzu;C j xuÞkpuuðzu;CÞð Þ
¼ DKL quuðzu j xu;CÞpuðCÞkpuuðzuÞpuðCÞð Þ
¼ EpuuðCÞ DKL quuðzu j xu;CÞkpuuðzuÞð Þ� �

;

which completes the proof. tu
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Here we have introduced a variational distribution
quuðzu j xu;CÞ, whose implementation also encourages macro
disentanglement andwill be presented later. The two expect-
ations, i.e., EpuuðCÞ½�� and Equuðzu j xu;CÞ½��, are intractable, and are
therefore estimated using the Gumbel-Softmax trick [28],
[54] and the Gaussian re-parameterization trick [33], respec-
tively. Once the training procedure is finished, quuðzu j xu;CÞ
will be an approximation of the intractable posterior distri-
bution puuðzu j xu;CÞ. We use the mode of puuðCÞ as C, and the
mode of quuðzu j xu;CÞ as the representation of user u.

3.2.3 Micro Disentanglement

A natural strategy to encourage micro disentanglement is to
force statistical independence between the dimensions, i.e.,
to force

quuðzðkÞu jCÞ �
Yd
j¼1

quuðzðkÞu;j jCÞ;

so that each dimension describes an isolated factor, where

quuðzu jCÞ ¼
Z

quuðzu j xu;CÞpdataðxuÞ dxu:

Fortunately, the Kullback–Leibler (KL) divergence term
in the lower bound above does provide a way to encourage
independence. Specifically, the KL term of our model can be
rewritten as:

EpdataðxuÞ
DKLðquuðzu j xu;CÞkpuuðzuÞÞ
� �

¼ Iqðxu; zuÞ þDKLðquuðzu jCÞkpuuðzuÞÞ: (4)

The proof is as follows.

Proof.

EpdataðxuÞ
DKL quuðzu j xu;CÞkpuuðzuÞð Þ� �

¼ EpdataðxuÞ
Equuðzu j xu;CÞ ln

quuðzu j xu;CÞ
puuðzuÞ

� �� �

¼ EpdataðxuÞ
Equuðzu j xu;CÞ ln

quuðzu j xu;CÞ
quuðzu jCÞ

quuðzu jCÞ
puuðzuÞ

� �� �

¼ EpdataðxuÞ
Equuðzu j xu;CÞ ln

quuðzu j xu;CÞ
quuðzu jCÞ þ ln

quuðzu jCÞ
puuðzuÞ

� �� �

¼ EpdataðxuÞ
DKL quuðzu j xu;CÞkquuðzu jCÞð Þ� �

þ Equuðzu j xu;CÞpdataðxuÞ
ln
quuðzu jCÞ
puuðzuÞ

� �

¼ Iqðxu; zuÞ þ Equuðzu jCÞ ln
quuðzu jCÞ
puuðzuÞ

� �

¼ Iqðxu; zuÞ þDKL quuðzu jCÞkpuuðzuÞð Þ:

Note that pdataðxu jCÞ ¼ pdataðxuÞ, and the mutual
information Iqðxu; zuÞ is under the joint distribution

quuðzu; xu jCÞ
¼ quuðzu j xu;CÞpdataðxu jCÞ
¼ quuðzu j xu;CÞpdataðxuÞ;

which completes the proof. tu

Similar decomposition of the KL term has been noted for
the original VAEs previously [1], [8], [31]. Penalizing the lat-
ter KL term would encourage independence between the
dimensions, if we choose a prior that satisfies puuðzuÞ ¼Qd0

j¼1 puuðzu;jÞ. On the other hand, the former term Iqðxu; zuÞ is
the mutual information between xu and zu under
quuðzu j xu;CÞ � pdataðxuÞ. Penalizing Iqðxu; zuÞ is equivalent to
applying the information bottleneck principle [2], [63],
which encourages zu to ignore as much noise in the input as
it can and to focus on merely the essential information. We
therefore follow b-VAE [21], and strengthen these two regu-
larization terms by a factor of b� 1, which brings us to the
following training objective:

EpuuðCÞ
�
Equuðzu j xu;CÞ

�
ln puuðxu j zu;CÞ

�
� b �DKL quuðzu j xu;CÞkpuuðzuÞð Þ�: (5Þ

3.3 Implementation

In this section, we describe the implementation of puuðCÞ,
puuðxu;i j zu;CÞ (the decoder), puuðzuÞ (the prior), quuðzu j xu;CÞ
(the encoder), and propose an efficient strategy to combat
mode collapse. The parameters uu of our implementation
include:K concept prototypes fmkgKk¼1 2 RK	d,M item rep-

resentations fhigMi¼1 2 RM	d used by the decoder,M context

representations ftigMi¼1 2 RM	d used by the encoder, and the
parameters of a neural network fnn : Rd ! R2d. We optimize
uu to maximize the training objective (see Equation (6)) using
Adam [32].

3.3.1 Prototype-Based Concept Assignment

A straightforward approach would be to assume puuðCÞ ¼QM
i¼1 pðciÞ and parameterize each categorical distribution

pðciÞ with its own set of K � 1 parameters. This approach,
however, would result in over-parameterization and low
sample efficiency. We instead propose a prototype-based
implementation. To be specific, we introduceK concept pro-
totypes fmkgKk¼1 and reuse the item representations fhigMi¼1
from the decoder. We then assume ci is a one-hot vector
drawn from the following categorical distribution puuðciÞ:

ci 
 Categorical Softmaxð½si;1; si;2; . . . ; si;K �Þ
� �

;

si;k ¼ Cosineðhi;mkÞ=t; (6)

where Cosineða;bÞ ¼ a>b=ðkak2 kbk2Þ is the cosine similar-
ity, and t is a hyper-parameter that scales the similarity
from ½�1; 1� to ½� 1

t
; 1
t
�. We set t ¼ 0:1 to obtain a more

skewed distribution.

3.3.2 Preventing Mode Collapse

We use cosine similarity, instead of the inner product simi-
larity adopted by most existing deep learning methods [20],
[38], [40]. This choice is crucial for preventing mode col-
lapse, which can be a severe issue with a mixture model [24],
[73] such as ours if no special treatment is applied, espe-
cially when neural networks are involved [62]. In fact, with
inner product, the majority of the items are highly likely to
be assigned to a single concept mk0 that has an extremely
large norm, i.e., kmk0 k2 !1, even when the items fhigMi¼1
correctly formK clusters in the high-dimensional Euclidean
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space. And we observe empirically that this phenomenon
does occur frequently with inner product (see Figs. 3c and
4c). In contrast, cosine similarity avoids this degenerate case
due to the normalization. Moreover, cosine similarity is
related with the Euclidean distance on the unit hyper-
sphere, and the Euclidean distance is a proper metric that is
more suitable for inferring the cluster structure, compared
to inner product.

3.3.3 Decoder

The decoder predicts which item out of the M ones is
mostly likely to be clicked by a user, when given the user’s
representation zu ¼ ½zð1Þu ; zð2Þu ; . . . ; zðKÞu � and the one-hot con-

cept assignments fcigMi¼1. We assume that

puuðxu;i j zu;CÞ /
XK
k¼1

ci;k � gðiÞuu ðzðkÞu Þ (7)

is a categorical distribution over theM items, and define

g
ðiÞ
uu ðzðkÞu Þ ¼ expðCosineðzðkÞu ;hiÞ=tÞ: (8)

This design implies that fhigMi¼1 will be micro-disentangled
if fzðkÞu gNu¼1 is micro-disentangled, as the two’s dimensions
are aligned.

3.3.4 Prior & Encoder

The prior puuðzuÞ needs to be factorized in order to achieve
micro disentanglement. We therefore set puuðzuÞ to Nð00; s2

0IÞ.
The encoder quuðzu j xu;CÞ is for computing the representa-
tion of a user when given the user’s behavior data xu, which
approximates the posterior. The encoder maintains an addi-
tional set of context representations ftigMi¼1, rather than reus-
ing the item representations fhigMi¼1 from the decoder,
which is a common practice in the literature [40]. We
assume that

quuðzu j xu;CÞ ¼
YK
k¼1

quuðzðkÞu j xu;CÞ;

and represent each quuðzðkÞu j xu;CÞ as a multivariate normal
distribution with a diagonal covariance matrix
NðmmðkÞu ; ½diagðssðkÞu Þ�2Þ, where the mean and the standard
deviation are parameterized by a neural network fnn :
Rd ! R2d:

ðaðkÞu ;bðkÞu Þ ¼ fnn

P
i:xu;i¼þ1 ci;k � tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i:xu;i¼þ1 c
2
i;k

q
0
B@

1
CA;

mmðkÞu ¼
aðkÞu

kaðkÞu k2
;

ssðkÞu s0 � exp � 1

2
bðkÞu

	 

: (9)

The neural network fnnð�Þ captures nonlinearity, and is
shared across the K components. We normalize the mean,
so as to be consistent with the use of cosine similarity which
projects the representations onto a unit hypersphere. Note

that s0 should be set to a small value, e.g., around 0.1, since
the learned representations are now normalized.

Algorithm 1. The Training Procedure. We add 10�8 to
Prevent Division-by-Zero Wherever Appropriate.

1: input: xu ¼ fxu;i : user u clicks item i; i.e:; xu;i ¼ 1g.
2: parameters:

Concept prototypesmk 2 Rd for k ¼ 1; 2; . . . ; K;
Item representations hi 2 Rd for i ¼ 1; 2; . . . ;M;
Context representations ti 2 Rd for i ¼ 1; 2; . . . ;M;
Parameters of a neural network fnn : Rd ! R2d;
Item categories: ĉi 2 RK for i ¼ 1; 2; . . . ;M ;

⊳ All these parameters are collectively denoted as uu.
3: function Initialization With Semantics
4: fvigMi¼1 ¼ AlexNetð�Þ.
5: for i ¼ 1; 2; . . . ;M do
6: vi ¼ 1

M

PM
i¼1 vi.

7: V ¼ 1
M

PM
i¼1ðvi � viÞðvi � viÞT .

8: P ¼ QT ½: d�, where V ¼ QLQT .

9: fhigMi¼1 ¼ fPvigMi¼1.
10: fmkgKk¼1 ¼ Kmeansðh1;h2; � � � ;hMÞ.
11: returnfhigMi¼1; fmkgKk¼1
12: function PrototypeClustering
13: for i ¼ 1; 2; . . . ;M do
14: si;k  h>i mk=ðt � khik2 � kmkk2Þ;

where k ¼ 1; 2; . . . ; K:
15: ci 
Gumbel-Softmax(½si;1; si;2; . . . ; si;K �).

⊳ At test time, ci is set to the mode.
16: returnfcigMi¼1
17: function Encoderxu, fcigMi¼1
18: for k ¼ 1; 2; . . . ;K do

19: ðak;bkÞ  fnn

P
i:xu;i¼þ1 ci;k �tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i:xu;i¼þ1 c
2
i;k

q
0
@

1
A,

20: mmðkÞ ak=kakk2,
21: ssðkÞ s0 � exp � 1

2bk

� �
.

22: mmu ½mmð1Þ;mmð2Þ; . . . ;mmðKÞ�,
23: ssu ½ssð1Þ; ssð2Þ; . . . ; ssðKÞ�,
24: �� 
 Nð00; IÞ.
25: zu ¼ mmu þ �� � ssu.

⊳ zu is set to mmu at test time. “�” stands for ele-
ment-wise multiplication.
26: returnzu,DKLðN ðmmu; diagðssuÞÞkN ð00; s0 � IÞÞ
27: function Decoderzu, fcigMi¼1
28: pu;i

PK
k¼1 ci;k � expðzðkÞu

>
hi=ðt � kzðkÞu k2 � khik2ÞÞ,

where i ¼ 1; 2; . . . ;M .
29: ½pu;1; pu;2; . . . ; pu;M �

Softmaxð½ln pu;1; ln pu;2; . . . ; ln pu;M �Þ:
⊳ We replace the Softmaxð�Þ

above with Sampled� Softmaxð�Þ, and compute pu;i only if
xu;i ¼ 1 or item i is sampled, whenM is very large.
30: returnfpu;igMi¼1
31: fcigMi¼1 PrototypeClustering( ).
32: zu,DKL Encoder(xu, fcigMi¼1).
33: fpu;igMi¼1 Decoder(zu, fcigMi¼1).
34: L ¼ �b �DKL þ

P
i:xu;i¼1 ln pu;i

þPM
i¼1 Cross Entropyðci; ĉiÞ.

35: uu Update uu to maximize L, using the gradientruuL.
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3.4 Incorporating Semantic Information

In this section, we discuss the incorporation of semantic
information extracted from items to further boost the model
performance. Specifically, we consider two types of seman-
tic information, i.e., visual signals and categorical signals.

Incorporating Visual Signals. The two key elements, i.e.,
concept prototypes fmkgKk¼1 and item representations
fhigMi¼1, in the prototype mechanism which has a crucial
influence on both encoder and decoder, are so far initialized
randomly without taking any semantic information from
items into consideration.

Therefore, to further improve the model performances,
we encode visual semantic information through a pre-
trained AlexNet over the raw item image to obtain visual
feature vi for each item i. To match the dimension of vi with
that of the item embedding, we conduct Principal Compo-
nent Analysis (PCA) on vi. Then we initialize hi with the
low-dimensional visual feature conduct initialization for mk

by calculating the cluster center (obtained from K-means) of
item representations belonging to concept k. Concretely, the
visual features are obtained from the output of the last sec-
ond fully-connected layers of the AlexNet, which has five
convolutional layers followed by three fully-connected
layers and is pre-trained on the ImageNet dataset with
semantic categorical labels. Assuming the visual features
output from AlexNet is denoted as fvigMi¼1 ¼ AlexNetð�Þ,
then the process of initializing fhigMi¼1 and fmkgKk¼1 can be
formulated as follows,

vi ¼ 1

M

XM
i¼1

vi;

V ¼ 1

M

XM
i¼1
ðvi � viÞðvi � viÞT ;

V ¼ QLQT ;

P ¼ QT ½: d�;
fhigMi¼1 ¼ fPvigMi¼1;
fmkgKk¼1 ¼ Kmeansðh1;h2; . . . ;hMÞ; (10)

where each column of Q represents an eigenvector of V and
P contains d eigenvectors corresponding to the largest d
eigenvalues.

Incorporating Categorical Signals. The number of macro
concepts, i.e., K, are so far preset by human experience, fol-
lowed by macro disentanglement in an unsupervised man-
ner, which may run the risk of misalignment between the
macro concepts and actual categories of items despite mas-
sive cost on trying and testing. Therefore, we utilize the cat-
egorical semantic information to achieve better macro
disentanglement through supervised categorical signals in
the following:

min
XM
i¼1

Cross Entropyðci; ĉiÞ; (11)

where ĉi is one-hot vector that reflects the ground-truth cat-
egory of the ith item and Cross Entropyðci; ĉiÞ denotes the
binary classification loss between the learned category and
true category of the item i.

Empirical results in our experiments later show that by
taking semantic information, i.e., visual and categorical sig-
nals, into account, the proposed SEM-MacridVAE model is
able to outperform MacridVAE which initializes item repre-
sentations and concept prototypes in a random manner.
The incorporation of item semantic information is illus-
trated in the upper part of Fig. 1. Algorithm 1 presents the
implementation details of the whole procedure.

3.5 User-Controllable Recommendation

The controllability enabled by the disentangled representa-
tions can bring a new paradigm for recommendation. It
allows a user to interactively search for items that are simi-
lar to an initial item except for some controlled aspects, or
to explicitly adjust the disentangled representation of his/
her preference, learned by the system from his/her past
behaviors, to actually match the current preference. Here,
we formalize the task of user-controllable recommendation,
and illustrate a possible solution.

3.5.1 Task Definition

Let h� 2 Rd be the representation to be altered, which can be
initialized as either an item representation or a component
of a user representation. The task is to gradually alter its jth

dimension h�;j, while retrieving items whose representa-
tions are similar to the altered representation. This task is
nontrivial, since usually no item will have exactly the same
representation as the altered one, especially when we want
the transition to be smooth, monotonic, and thus human-
understandable.

3.5.2 Solution

Here we illustrate our approach to this task. We first probe
the suitable range ða; bÞ for h�;j. Let us assume that proto-
type k� is the prototype closest to h�. The range ða; bÞ is
decided such that: prototype k� remains the prototype clos-
est to h� if and only if h�;j 2 ða; bÞ. We can decide each end-
point of the range using binary search. We then divide the
range ða; bÞ into B subranges, a ¼ a0 < a1 < a2 . . . < aB ¼
b. We ensure that the subranges contain roughly the same
number of items from concept k� when dividing ða; bÞ .
Finally, we aim to retrieve B items fitgBt¼1 2 f1; 2; . . . ;MgB
that belong to concept k�, each from one of the B subranges,
i.e., hit;j 2 ðat�1; at�. We thus decide the B items by maximiz-
ing

X
1
t
B

e
Cosineðhit ;�j;h�;�jÞ

t þ g �
X

1
t < t0
B
e
Cosineðhit ;�j;hit0 ;�jÞ

t ; (12)

where hi;�j ¼ ½hi;1;hi;2; . . . ;hi;j�1;hi;jþ1; . . . ;hi;d� 2 Rd�1 and
g is a hyper-parameter. We approximately solve this maxi-
mization problem sequentially using beam search [45].

Intuitively, selecting items from the B subranges ensures
that the items change monotonously in terms of the jth

dimension. On the other hand, the first term in the maximi-
zation problem forces the retrieved items to be similar with
the initial item in terms of the dimensions other than j,
while the second term encourages any two retrieved items
to be similar in terms of the dimensions other than j.
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We highlight in Figs. 6, 7, and 8 some example cases that
we found using this approach.

4 EMPIRICAL EXPERIMENTS

In this section, we demonstrate that our learned disen-
tangled representations are not only effective for recom-
mendation, but also interpretable and controllable.

4.1 Experimental Setup

4.1.1 Datasets

We conduct extensive experiments on five public real-world
datasets, including a MovieLens dataset (i.e., ML-latest-
small) [16] and four Amazon product datasets [18] of differ-
ent meta categories (i.e., Movies&TV, Musical Instruments,
Home&Kitchen and Clothing&Shoes&Jewelry1). We follow
MultiVAE [40], and binarize these five datasets by labeling
ratings of four or higher as 1, and keeping users who have
at least fifteen rating actions. Each item in MovieLens and
Amazon datasets is associated with its corresponding
image, and we utilize an AlexNet pre-trained on the Image-
Net dataset to obtain 4096-dimension visual features which
will then be transformed to a d-dimension latent factor to
initialize item representation h of this item. Given that the
ImageNet dataset contains semantic guidance for visual fea-
tures through providing ground-truth labels for various
types of images, in this way we are able to incorporate
semantic information of each item into our learning process.
All datasets are preprocessed using the script provided by
MultiVAE. Half of the held-out users are used for valida-
tion, while the other half of the held-out users are for test-
ing. Table 1 summarizes the basic statistics of the above
datasets.

4.1.2 Baselines

We compare our approach with four baselines, Multi-
DAE [40], MultiVAE [40], MacridVAE [51] and DGCF [66].
MultiDAE [40] and MultiVAE [40] are the two state-of-the-
art methods for collaborative filtering. In particular, Multi-
VAE is similar to b-VAE [21], and has a hyper-parameter b
that controls the strength of disentanglement. However,
MultiVAE does not learn disentangled representations,
because it requires b� 1 to perform well. MacridVAE [51]
can be treated as a variant of SEM-MacridVAE which con-
ducts random initialization without considering any seman-
tic information from items, and we compare it with the
proposed SEM-MacridVAE model to further verify the

improvement brought by incorporating item semantic infor-
mation. Besides, DGCF [66] is chosen as the comparative
baseline given that it is one of the most recent works focus-
ing on disentangled collaborative filtering.

We would also like to point out that there are also several
works related to disentangled representation for recommen-
dation [39], [61], [67], [71], [77]. However, we find that some
of these works require multimodal [67], [77] or heteroge-
neous [71] information as input, some [39] in essence can be
regarded as a b-VAE model with varying b, and some other
work [61] utilizes social network information for social rec-
ommendation. These works are orthogonal to our focus in
this paper and therefore are not included for comparisons
in the experiments.

4.1.3 Hyper-Parameters

We constrain the number of learnable parameters to be
around 2Md for each method so as to ensure fair compari-
son, which is equivalent to using d-dimensional representa-
tions for the M items. Note that all the methods under
investigation use two sets of item representations, and we
do not constrain the dimension of user representations since
they are not parameters. We treatK as a hyper-parameter to
be tuned and do not directly set K to the ground truth
when [67], evaluating its performance on recommendation
tasks, so as to ensure a fair comparison with the baselines.
We set d ¼ 200 and fix t to 0.1. The neural network fnnð�Þ in
our model is a multilayer perceptron (MLP), whose input
and output are constrained to be d-dimensional and
2d-dimensional, respectively. We use the tanh activation
function. We apply dropout before every layers, except the
last layer. The model is trained using Adam. We then tune
the other hyper-parameters of both our approach’s and our
baselines’ automatically using the TPE method [5] imple-
mented by Hyepropt [4]. We let Hyperopt conduct 200 trials
to search for the optimal hyper-parameter configuration for
each method on the validation of each dataset. The hyper-
parameter search space is specified as follows:

� The standard deviation of the prior s0 2 ½0:075; 0:5�.
� The strength of micro disentanglement b 2 ½0; 100�.
� The number of macro factorsK 2 f1; 2; 3; . . . ; 20g.
� The learning rate 2 ½10�8; 1�.
� L2 regularization 2 ½10�12; 1�.
� Dropout rate 2 ½0:05; 1�.
� The number of hidden layers in a neural network 2
f0; 1; 2; 3g.

� The number of neurons in a hidden layer 2
f50; 100; 150; . . . ; 700g.

4.1.4 Number of Macro Factors

Our initial implementation adaptively adjusts the number
of macro factors K during training. To be specific, we set K
as a sufficiently large value at the beginning and shrink its
value after every training epoch if the Jensen–Shannon (JS)
divergence between fpijkgMi¼1 and fpijk0 gMi¼1 for some k 6¼ k0 is
negligible compared to a predefined threshold, where pijk :
¼ puuðci;k ¼ 1Þ=Pi0 puuðci0;k ¼ 1Þ. We, however, do not find
this adaptive strategy to be significantly better than the
naı̈ve strategy that treats K as a hyper-parameter to be

TABLE 1
Statistics of the Datasets

Dataset Users Item Ratings Density

ML-latest-small 531 4807 46217 1.8106%
Movies&TV 15187 46234 623239 0.0888%
Musical Instruments 655 10377 15540 0.2286%
Home&Kitchen 6640 52900 154622 0.0440%
Clothing&shoes&Jewelry 9575 130742 197708 0.0158%

1. http://jmcauley.ucsd.edu/data/amazon/links.html
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tuned by Hyperopt, since the adaptive strategy introduces
extra computational cost as well as a new hyper-parameter.

4.1.5 Experimental Environment

We implement our model with Tensorflow, and conduct
our experiments with:

� CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.
� RAM: DDR4 1TB.
� GPU: 8x GeForce GTX 1080 Ti.
� Operating system: Ubuntu 18.04 LTS.
� Software: Python 3.6; NumPy 1.15.4; SciPy 1.2.0; sci-

kit-learn 0.20.0; TensorFlow 1.12.

4.2 Model Performance

We evaluate the performance of our approach on the task of
collaborative filtering for implicit feedback datasets [23],
one of the most common settings for recommendation. We
follow the experiment protocol established by the previous
work [40] strictly, as well as use the same preprocessing
procedure and evaluation metrics. The results on the five
datasets are shown in Table 2.

We observe that our SEM-MacridVAE model outper-
forms the baseline methods significantly in all but one case
for all datasets. The improvement is likely due to two desir-
able properties of our approach. Firstly, macro disentangle-
ment not only allows us to accurately represent the diverse
interests of a user using the different components, but also
alleviates data sparsity by allowing a rarely visited item to

borrow information from other items of the same category,
which is the motivation behind many hierarchical meth-
ods [50], [75]. Secondly, as we will later show in Section 4.4
that the dimensions of the representations learned by our
approach are highly disentangled, i.e., independent, which
should take credits from the micro disentanglement regular-
izer leading to more robust performances. This second
property implies that our approach can be more robust to
the scenario where multiple factors are co-influencing the
data generating process, especially when there is a limited
amount of available data [3]. For example, it would not
overreact to the preference for bag size when making a pre-
diction that is only related with the preference for bag color.

SEM-MacridVAE versus MacridVAE. The comparisons
between SEM-MacridVAE with item semantic information
and MacridVAE without semantic information in Table 2
further validate the benefit of considering semantics in
boostingmodel performances. Indeed, incorporating seman-
tic meanings has been regarded as one effective way to
improve both model accuracy and explainability of machine
learning algorithms in the community.

With Macro & Micro Disentanglement v.s. Without Macro &
Micro Disentanglement. Ablation studies (Without Macro and
Without Micro) in Table 3 confirm the benefit of conducting
both Macro and Micro disentanglement when making
recommendations.

With Visual & Categorical Signals v.s. Without Visual & Cate-
gorical Signals. Similarly, comparisons for Without Visual,
Without Categorical and SEM-MacridVAE (Full Model) in

TABLE 2
Results of Recommendation Performance, Where Bold Font Denotes the Winner

Dataset Method Metrics

NDCG@100 recall@20 recall@50

ML-latest MultiDAE 0.31930(�0.02657) 0.27885(�0.03689) 0.37373(�0.03658)
-small MultiVAE 0.33233(�0.03031) 0.28539(�0.03659) 0.38718(�0.03774)

MacridVAE 0.34180(�0.03190) 0.29844(�0.03711) 0.38994(�0.03696)
DGCF 0.34709(�0.02971) 0.29185(�0.03433) 0.39353(�0.03836)

SEM-MacridVAE 0.35129(�0.03204) 0.30293(�0.03591) 0.40026(�0.03724)
Movies MultiDAE 0.09774(�0.00336) 0.08342(�0.00382) 0.13936(�0.00498)
&TV MultiVAE 0.09953(�0.00338) 0.08431(�0.00387) 0.14004(�0.00496)

MacirdVAE 0.11619(�0.00365) 0.10397(�0.00426) 0.16011(�0.00527)
DGCF 0.10060(�0.00328) 0.08541(�0.00380) 0.14666(�0.00498)

SEM-MacridVAE 0.11674(�0.00367) 0.10466(�0.00423) 0.16101(�0.00515)
Musical MultiDAE 0.04508(�0.01194) 0.03171(�0.01767) 0.09709(�0.03196)
Instruments MultiVAE 0.04420(�0.01156) 0.03436(�0.01781) 0.09590(�0.03022)

MacridVAE 0.05706(�0.01871) 0.04034(�0.01885) 0.09419(�0.03199)
DGCF 0.06109(�0.01657) 0.08352(�0.03310) 0.11870(�0.03754)

SEM-MacridVAE 0.06450(�0.01415) 0.08479(�0.03132) 0.13436(�0.03829)
Home MultiDAE 0.03577(�0.00401) 0.03488(�0.00499) 0.06190(�0.00674)
&Kitchen MultiVAE 0.03761(�0.00420) 0.03607(�0.00514) 0.06094(�0.00671)

MacridVAE 0.04271(�0.00456) 0.03641(�0.00510) 0.06737(�0.00659)
DGCF 0.04370(�0.00404) 0.03853(�0.00494) 0.07699(�0.00708)

SEM-MacridVAE 0.04463(�0.00434) 0.04669(�0.00557) 0.07913(�0.00727)
Clothing MultiDAE 0.01123(�0.00213) 0.01156(�0.00297) 0.01725(�0.00353)
&Shoes MultiVAE 0.01107(�0.00182) 0.01278(�0.00296) 0.02507(�0.00432)
&Jewelry MacridVAE 0.01785(�0.00265) 0.01540(�0.00313) 0.03009(�0.00458)

DGCF 0.01833(�0.00296) 0.02293(�0.00462) 0.03691(�0.00558)
SEM-MacridVAE 0.01853(�0.00240) 0.02491(�0.00434) 0.03720(�0.00517)

We note that all models are constrained to have around 2Md parameters, whereM is the number of items and d is the dimension of each item representation. The
experiments show our proposed SEM-MacridVAE model is able to beat all comparative baselines.
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Table 3 further validate the necessity of incorporating seman-
tic information to boost themodel performance.

Discussions. The ablation studies on the two-level (macro
and micro) disentanglement and the semantic (visual and
categorical) signals show the improvement of the model per-
formance brought by these core components in our proposed
SEM-MacridVAE model. On the one hand, the macro disen-
tanglement helps to capture user high-level intentions from
a diversity of potential interests, while themicro disentangle-
ment targets at learning the user low-level preferences in a
more fine-grained way. Taking both levels of intentions into
consideration enables the proposed SEM-MacridVAEmodel
to more accurately infer user interests, thus improving the
final recommendation performance. On the other hand,
incorporating the categorical signals can more accurately
align the learnedmacro disentangled intentions (i.e., the pro-
totype concepts) to the ground-truth item categories, thus
leading to better representation learning. Moreover, employ-
ing the visual signals to initialize the item embeddings is
able to ease the process of learning detailed user visual pref-
erences (e.g., the color of a bag) for our SEM-MacridVAE
model. These two types of semantic supervision are taken
into account to improve both the disentanglement and
explainability of SEM-MacridVAE with human prior, which
is illustrated by the ablation studies in Table 2 as we expect.

4.3 Macro Disentanglement

In order that we can qualitatively examine to which degree
our proposed SEM-MacridVAE model is able to achieve

macro disentanglement, the high-dimensional representations
learned by our approach are visualized on threeAmazon data-
sets, i.e., Amazon Musical Instruments, Amazon Home&Kitchen
and Amazon Clothing&Shoes&Jewelry. We pick subsets from
these three Amazon datasets respectively such that every item
only belongs to one category, and the number of items in every
category is balanced to be closed to each other. Concretely, we
set K to 4 for Amazon Musical Instruments, 5 for Amazon
Home&Kitchen and 3 for Amazon Clothing&Shoes&Jewelry i.e.,
the number of ground-truth categories, when training our
model. We then match each learned prototype to a ground
truth category by greedily minimizing the distance between
the prototype and the center of the items from that category.
We visualize the item representations and the user representa-
tions together using t-SNE [53], where we treat the K compo-
nents of a user as K individual points and keep only the two
components that have the highest confidence levels. The confi-
dence of component k is defined as

P
i:xu;i > 0 ci;k, where ci;k is

the value inferred by our SEM-MacridVAE model rather than
taken from the ground-truth.

Figs. 2, 3, and 4 depict the visualization results on Ama-
zon Musical Instruments, Amazon Home&Kitchen and Amazon
Clothing&Shoes&Jewelry respectively. Specifically, item i is
colored according to argmaxkci;k, i.e., the inferred category.
The discovered clusters of items (see Figs. 2a, 3a, and 4a),
learned in an unsupervised manner, align well with the
ground-truth categories (see Figs. 2b, 3b, and 4b, where the
color order is chosen such that the connections between the
ground-truth categories and the learned clusters are easy to
verify). Figs. 2c, 3c, and 4c highlight the importance of using

TABLE 3
Ablation Studies on Macro & Micro Disentanglement and Visual & Categorical Signals, Where Bold Font Denotes the Winner

Dataset Method Metrics

NDCG@100 recall@20 recall@50

ML-latest Without Macro 0.34571(�0.03125) 0.29806(�0.03481) 0.38994(�0.03898)
-small Without Micro 0.33872(�0.02977) 0.29140(�0.03482) 0.38253(�0.03828)

Without Visual 0.34568(�0.03222) 0.29999(�0.03729) 0.38504(�0.03750)
Without Categorical 0.34469(�0.03130) 0.30278(�0.03492) 0.39415(�0.03824)

SEM-MacridVAE (Full Model) 0.35129(�0.03204) 0.30293(�0.03591) 0.40026(�0.03724)
Movies Without Macro 0.11309(�0.00359) 0.10294(�0.00422) 0.15935(�0.00521)
&TV Without Micro 0.11064(�0.00345) 0.10210(�0.00424) 0.16062(�0.00522)

Without Visual 0.11524(�0.00365) 0.10360(�0.00417) 0.16025(�0.00521)
Without Categorical 0.11559(�0.00365) 0.10336(�0.00424) 0.16012(�0.00515)

SEM-MacridVAE (Full Model) 0.11674(�0.00367) 0.10466(�0.00423) 0.16101(�0.00515)
Musical Without Macro 0.06389(�0.01775) 0.07111(�0.02798) 0.11726(�0.03532)
Instruments Without Micro 0.06206(�0.01383) 0.07111(�0.02798) 0.13733(�0.03819)

Without Visual 0.05801(�0.01923) 0.04496(�0.02238) 0.10265(�0.03253)
Without Categorical 0.06355(�0.01426) 0.08265(�0.02881) 0.13656(�0.03621)

SEM-MacridVAE (Full Model) 0.06450(�0.01415) 0.08479(�0.03132) 0.13436(�0.03829)
Home Without Macro 0.04377(�0.00404) 0.04412(�0.00556) 0.07332(�0.00713)
&Kitchen Without Micro 0.04365(�0.00429) 0.04243(�0.00535) 0.07166(�0.00690)

Without Visual 0.04264(�0.00437) 0.04066(�0.00525) 0.07030(�0.00689)
Without Categorical 0.04440(�0.00426) 0.04250(�0.00520) 0.07484(�0.00692)

SEM-MacridVAE (Full Model) 0.04463(�0.00434) 0.04669(�0.00557) 0.07913(�0.00727)
Clothing Without Macro 0.01817(�0.00254) 0.02233(�0.00398) 0.03055(�0.00470)
&Shoes Without Micro 0.01805(�0.00257) 0.02219(�0.00398) 0.03660(�0.00511)
&Jewelry Without Visual 0.01645(�0.00246) 0.01963(�0.00369) 0.03107(�0.00469)

Without Categorical 0.01852(�0.00250) 0.02248(�0.00406) 0.03328(�0.00476)
SEM-MacridVAE (Full Model) 0.01853(�0.00240) 0.02491(�0.00434) 0.03720(�0.00517)

The experimental results demonstrate our proposed model with full functionality (i.e., SEM-MacridVAE) achieve the best performance.
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Fig. 2. Visualization of macro disentanglement for Amazon Musical Instruments withK ¼ 4, where item i is colored according to argmaxkci;k, i.e., the
inferred category. The discovered clusters of items (see Fig. 2a) align well with the ground-truth categories (see Fig. 2b, where the color order is cho-
sen such that the connections between the ground-truth categories and the learned clusters are easy to verify). Fig. 2c highlights the importance of
using cosine similarity rather than inner product to combat mode collapse, where items are obtained by training a new model that uses inner product
instead of cosine, colored according to the value of argmaxkci;k.

Fig. 3. Visualization of macro disentanglement for Amazon Home&Kitchen withK ¼ 5, in the same way as Fig. 2.
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cosine similarity rather than inner product to combat mode
collapse, where items are obtained by training a new model
that uses inner product instead of cosine, colored according
to the value of argmaxkci;k.

4.3.1 Interpretability

Again, we take the Amazon datasets as instances. Figs. 2a,
3a, and 4a show the clusters inferred based on the proto-
types on Amazon Musical Instruments, Amazon Home&Kitchen
and Amazon Clothing&Shoes&Jewelry respectively, which are
similar to Figs. 2b, 3b, and 4b showing the ground-truth cat-
egories respectively. Given that the proposed SEM-Macrid-
VAE model is trained without the ground-truth category
labels, we believe that our approach is able to discover and
disentangle the macro structures underlying the user behav-
ior data in an interpretable manner.

4.3.2 Cosine versus Inner Product

To further present the necessity of adopting cosine similar-
ity instead of the widely used inner product similarity, we
train an additional model using inner product rather than
cosine to calculate similarity. The item representations
obtained from this additional model on Amazon Musical
Instruments, Amazon Home&Kitchen and Amazon Clothing
&Shoes&Jewelry are visualized in Figs. 2c, 3c, and 4c
respectively.

We observe that by adopting inner product as the similarity
measure, the clustering resultsmay vary for different datasets.
The prototype assignments are similar on Amazon Musical
Instruments (see Fig. 2c), while the majority of the items are
assigned to the same prototype on Amazon Home&Kitchen (see
Fig. 3c) or assigned to wrong prototypes different from the

ground-truth prototypes on Amazon Clothing&Shoes&Jewelry
(see Fig. 4c). On the other hand, each of the prototypes learned
by the cosine-basedmodel is assigned quite a significant num-
ber of items, being consistent with the ground-truth categories
(see Figs. 2a, 3a, and 4a).

These results support our claim that an appropriate met-
ric space such as the one defined through the cosine similar-
ity will play an important role in preventing the mode
collapse problem.

4.4 Micro Disentanglement

In addition to macro disentanglement, it is also necessary to
examine the capability of our proposed SEM-MacridVAE in
achieving micro disentanglement.

4.4.1 Independence

One important motivation of disentangled representation
learning is to achieve robust performance by letting the
dimensions capture the underlying explanatory factors in a
statistically independent way.

To gain further insight, we vary the hyper-parameters
related with micro disentanglement, i.e., b for our proposed
SEM-MacridVAE, MacridVAE and MultiVAE. In Fig. 5, we
plot the relationships between the level of independence
(micro disentanglement) achieved and the corresponding
recommendation performance. Each method is evaluated
on ML-latest-small, Amazon Musical Instruments, Amazon
Movies&TV, Amazon Home&Kitchen and Amazon Clothing&-
Shoes&Jewelry. We quantify the level of independence
achieved by a set of d-dimensional representations using
1� 2

dðd�1Þ
P

1
i < j
d jcorri;jj, where corri;j is the correlation

between dimension i and j. Fig. 5 indicates that high

Fig. 4. Visualization of macro disentanglement for Amazon Clothing&Shoes&Jewelry withK ¼ 3, in the same way as Fig. 2.
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performance is in general associated with a relatively high
level of independence (micro disentanglement) and SEM-
MacridVAE achieves a higher level of micro disentangle-
ment than MultiVAE.

4.4.2 Interpretability

We train our SEM-MacridVAE model with d ¼ 10, b ¼ 50
and s0 ¼ 0:3 on Amazon datasets, and investigate the
interpretability of the dimensions using strategies intro-
duced in Section 3.5.

In Figs. 6, 7, and 8, we retrieve some representative
dimensions that have human-understandable semantics on
Amazon Musical Instruments, Amazon Home&Kitchen and
Amazon Clothing&Shoes&Jewelry respectively. The examples
from these three datasets suggest that our SEM-MacridVAE
model has the potential to offer users fine-grained controls
over targeted aspects of the candidate items in recommen-
dation lists. However, we note that not all dimensions are
human-understandable.

Moreover, as is pointed out by Locatello et al. [43], well-
trained interpretable models can only be reliably identified
with the help of external knowledge, e.g., item attributes.
Therefore, we encourage future efforts in investigating
more semi-supervised methods [44] for disentangled repre-
sentation learning.

4.5 Model Complexity Analysis

In addition to the performance illustration and interpret-
ability visualization of our proposed SEM-MacridVAE
model, we further provide the model complexity analysis.

Space Complexity. As mentioned before, the space com-
plexity, i.e., the number of parameters used by SEM-
MacridVAE, is 2Md where M is the number of items and d
is the dimension of latent factors.

Time Complexity. We analyze the time complexity accord-
ing to the sequential execution pipeline of the proposed
algorithm by calculating the times of element multiplica-
tion. Assuming that there are N users and M items, the Pro-
totype Clustering process requires OðMdKÞ times of

Fig. 5. Micro disentanglement vs. recommendation performance. By varying the hyper-parameters b, we compare the micro disentanglement and
recommendation performance. It is observed that SEM-MacridVAE overall outperforms both MacridVAE and multiVAE in terms of both micro disen-
tanglement and recommendation performance under recall@20.
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Fig. 7. Starting from an item representation, we gradually change the value of a target dimension and retrieve the items having similar representa-
tions with the changed representations, as is described in Section 3.5. Here we present the retrieved items in Amazon Home&Kitchen dataset when
varying the target dimension and fixing others.

Fig. 6. Starting from an item representation, we gradually change the value of a target dimension and retrieve the items having similar representa-
tions with the changed representations, as is described in Section 3.5. Here we present the retrieved items in Amazon Musical Instruments dataset
when varying the target dimension and fixing others.
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Fig. 8. Starting from an item representation, we gradually change the value of a target dimension and retrieve the items having similar representa-
tions with the changed representations, as is described in Section 3.5. Here we present the retrieved items in Amazon Clothing&Shoes&Jewelry 
dataset when varying the target dimension and fixing others.



multiplications. Both the Encoding process and Decoding
process need OðNMdKÞ times of multiplications. The incor-
poration of visual signals is pre-trained and does not con-
sume extra running time during the training process. The
incorporation of categorical signals needs OðMKÞ times of
multiplications. Summing up all the above operations,
the time complexity of our SEM-MacridVAE model is
OðNMdK þNMdK þMdK þMKÞ ¼ OðNMdKÞ times of
element multiplications.

5 CONCLUSION

In this paper, we study the problem of learning disentangled
representations from user behaviors, and propose our SEM-
MacridVAE model capable of performing disentanglement
at both macro and micro levels. We relate macro factors to
high-level concepts associated with user intentions (buy a
pair of shoes or a laptop) and micro factors to low-level indi-
vidual user preferences (the size or the color of a shirt). Extra
semantic item information, including visual semantic and
categorical semantic, are further taken into consideration
to boost recommendation performance. Empirical results
including both quantitative and qualitative experiments
over five real-world datasets demonstrate the effectiveness
of our approach in learning disentangled representations
that are robust, interpretable, and controllable.

As for future work, it will be an interesting and promising
research direction for future investigation to explore novel
applications that can benefit in the interpretability and con-
trollability brought by the disentangled representations.
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